Параллелограмм

Параллелограмм — это такой четырехугольник, у которого противоположные стороны являются попарно параллельными.

Параллелограмм ABCD

Разновидностями параллелограмма (частные случаи) являются квадрат, прямоугольник и ромб.

Содержание

СкрытьПоказать

Свойства параллелограмма

1. Противоположные стороны тождественны.

Параллелограмм с тождественными противоположными сторонами

Доказательство

Первым делом проведем диагональ AC. Получаются два треугольника: ABC и ADC.

Параллелограмм с диагональю разбивающую на два треугольника

Так как ABCD — параллелограмм, то справедливо следующее:

AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.

AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.

Следовательно, \triangle ABC = \triangle ADC (по второму признаку: \angle 1 = \angle 2, \angle 3 = \angle 4 и AC — общая).

И, значит, \triangle ABC = \triangle ADC, то AB = CD и AD = BC.

Доказано!

2. Противоположные углы тождественны.

Параллелограмм с тождественными противоположными углами

Доказательство

Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4. Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4. Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C, \angle B = \angle D.

Доказано!

3. Диагонали разделены пополам точкой пересечения.

Параллелограмм с диагоналями

Доказательство

Проведем еще одну диагональ.

Параллелограмм с двумя диагоналями и накрест лежащими равными углами

По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD. Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).

Параллелограмм с двумя диагоналями и лежащими напротив углами

Доказано!

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?». То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.

Параллелограмм это четырехугольник с равными и параллельными напротив сторонами

AB = CD; AB || CD \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим подробнее. Почему AD || BC?

Параллелограмм с параллельными сторонами

\triangle ABC = \triangle ADC по свойству 1: AB = CD, AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC.

Но если \triangle ABC = \triangle ADC, то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). И следовательно AD || BC (\angle 3 и \angle 4 - накрест лежащие тоже равны).

Параллелограмм с параллельными сторонами и накрест лежащими углами

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.

Параллелограмм с равными противоположными сторонами

AB = CD, AD = BC \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим данный признак. Еще раз проведем диагональ AC.

Параллелограмм с диагональю и равными противоположными сторонами

По свойству 1 \triangle ABC = \triangle ACD.

Параллелограмм с диагональю и накрест лежащими равными углами

Из этого следует, что: \angle 1 = \angle 2 \Rightarrow AD || BC и \angle 3 = \angle 4 \Rightarrow AB || CD, то есть ABCD — параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.

Параллелограмм с равными противоположными углами

\angle A = \angle C, \angle B = \angle D \Rightarrow ABCD — параллелограмм.

Доказательство

Параллелограмм с отмеченными равными противоположными углами

2 \alpha + 2 \beta = 360^{\circ} (поскольку ABCD — четырехугольник, а \angle A = \angle C, \angle B = \angle D по условию).

Получается, \alpha + \beta = 180^{\circ}. Но \alpha и \beta являются внутренними односторонними при секущей AB.

И то, что \alpha + \beta = 180^{\circ} говорит и о том, что AD || BC.

При этом \alpha и \beta — внутренние односторонние при секущей AD. И это значит AB || CD.

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.

Параллелограмм с диагоналями, разделенными точкой пересечения

AO = OC; BO = OD \Rightarrow параллелограмм.

Доказательство

Параллелограмм с диагоналями и обозначенными сторонами и углами

BO = OD; AO = OC, \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD, \Rightarrow \angle 3 = \angle 4, и \Rightarrow AB || CD.

Аналогично BO = OD; AO = OC, \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8, и \Rightarrow AD || BC.

Четвертый признак верен.