Задание №104

Тип задания: 7
Тема: Первообразная функции

Условие

На координатной плоскости изображен график функции y=f(x). Одна из первообразных этой функции имеет вид: F(x)=-\frac13x^3-\frac52x^2-4x+2. Найдите площадь заштрихованной фигуры.

График дифференцируемой функции y=f(x)

Показать решение

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1, а по оси ординат графиком функции: f(x). Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1, по формуле определенного интеграла:

\int\limits_{-4}^{-1}f(x)dx=F(-1)-F(-4)

Подставим значение первообразной из условия и получим площадь фигуры:

F(-1)-F(-4)=

=\frac13-\frac52+4+2-\frac{64}{3}+\frac{80}{2}-16-2=

=-\frac{63}{3}+\frac{75}{2}-12=-21+37,5-12=4,5

Ответ

4,5

Рассказать друзьям

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены