Задание №336

Тип задания: 12
Тема: Логарифмические функции

Условие

Найдите наименьшее значение функции y=12x-\ln(12x)+100 на отрезке \left [\frac{1}{36}; \frac34 \right ].

Показать решение

Решение

y'=(12x-\ln(12x)+100)'=12-\frac{12}{12x}=\frac{12x-1}{x}.

y'=0 при x=\frac{1}{12}, причем y' меняет знак в этой точке с «−» на «+». Это означает, что x=\frac{1}{12} является точкой минимума.

y\left ( \frac{1}{12} \right )=12\cdot\frac{1}{12}-\ln\left ( 12\cdot\frac{1}{12} \right )+100=1-0+100=101.

Ответ

101
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены