Задание №960

Тип задания: 15
Тема: Логарифмические неравенства

Условие

Решите неравенство: \frac{\log_2(x+5)}{2^{x+2}-4^x-3}\leq\log_2(x+5).

Показать решение

Решение

ОДЗ: \begin{cases} x+5 > 0, \\ 2^{x+2}-4^x-3 \neq 0;  \end{cases}\enspace \begin{cases} x> -5, \\ 2^{2x} -4 \cdot 2^x+3 \neq0;  \end{cases}\enspace \begin{cases} x > -5, \\ x\neq 0, \\ x \neq \log_2 3\end{cases}.

x \in (-5; 0) \cup (0; \log_2 3) \cup (\log_2 3; +\infty ).

\frac{(1-4\cdot2^x+4^x+3)\log_2 (x+5)}{(2^x -1)(2^x -3)} \geq0,

\frac{(2^x -2)^2 \log_2 (x+5)}{(2^x - 2^0)(2^x -2^{\log_2 3})} \geq0.

Применим метод замены множителя, учитывая, что

а) \log_{h(x)} f(x) \rightarrow (h(x)-1)(f(x)-1) , тогда

\log_2 (x+5) \rightarrow (2-1)(x+5-1)= x+4.

б) h(x)^{p(x)}-h(x)^{q(x)} \rightarrow (h(x)-1) (p(x)-q(x)), тогда

2^x -2 \rightarrow (2-1)(x-1)=x-1,

2^x -2^0 =(2-1)(x-0)=x ,

2^x -2^{\log_2 3}= (2-1)(x-\log_2 3)= x-\log_2 3.

Неравенство примет вид \frac{(x+4)(x-1)^2}{x(x-\log_2 3)} \geq 0. Решим его методом интервалов.

Метод интервалов

Учитывая ОДЗ x> -5, x \neq 0 и x\neq \log_2 3, получим -4 \leq x < 0; x > \log_2 3. x=1.

Ответ

[-4;0) \cup  \left \{  1\right \} \cup (\log_2 3; +\infty) 

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены