Задания по теме «Стереометрия. Расстояния и углы в пространстве»

Открытый банк заданий по теме стереометрия, расстояния и углы в пространстве. Задания C2 из ЕГЭ по математике (профильный уровень)

Задание №987

Тип задания: 14
Тема: Расстояние между прямыми

Условие

В основании прямой призмы ABCDA_{1}B_{1}C_{1}D_{1} лежит ромб ABCD с диагоналями AC=10 и BD=24.

а) Докажите, что прямые B_{1}D_{1} и AC_{1} перпендикулярны.

б) Найдите расстояние между прямыми B_{1}D_{1} и AC_{1}, если известно, что боковое ребро призмы равно 20.

Показать решение

Решение

а) Ясно, что CC_{1} \perp A_{1}B_{1}C_{1}, так как ABCDA_{1}B_{1}C_{1}D_{1} — прямая призма.

Прямая призма с диагоналями в основании

Тогда A_{1}C_{1} — проекция AC_{1} на плоскость A_{1}B_{1}C_{1}. При этом B_{1}D_{1} \perp A_{1}C_{1} по свойству диагоналей ромба. Тогда по теореме о трёх перпендикулярах B_{1}D_{1} \perp AC_{1}, что и требовалось доказать.

б) Пусть O — точка пересечения диагоналей ромба A_{1}C_{1} и B_{1}D_{1}. В плоскости AA_{1}C_{1} проведем OK \perp AC_{1}, где точка K принадлежит AC_{1}. Но A_{1}C_{1} \perp B_{1}D_{1}, B_{1}D_{1} \perp AC_{1}, следовательно, B_{1}D_{1} \perp AA_{1}C_{1} по признаку перпендикулярности прямой и плоскости. Тогда B_{1}D_{1} перпендикулярна любой прямой в плоскости (AA_{1}C_{1}).

В частности, B_{1}D_{1} \perp OK. Значит, длина отрезка OK равна расстоянию между скрещивающимися прямыми AC_{1} и B_{1}D_{1}.

В треугольнике AA_{1}C_{1} проведём среднюю линию OS. Тогда OS=\frac{1}{2}AA_{1}=10 и OS \parallel AA_{1}, значит, OS \perp A_{1}C_{1} и \bigtriangleup OSC_{1} — прямоугольный. C_{1}O=\frac{1}{2}A_{1}C_{1}=5, S_{SOC_{1}}=\frac{1}{2}SO \cdot OC_{1}=\frac{1}{2}C_{1}S \cdot OK. Отсюда OK= \frac{C_{1}O \cdot OS}{C_{1}S}= \frac{5 \cdot 10}{\sqrt{5^2+10^2}}= \frac{50}{5\sqrt{5}}= 2\sqrt{5}.

Ответ

2\sqrt{5}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №986

Тип задания: 14
Тема: Угол между плоскостями

Условие

Все рёбра правильной треугольной призмы ABCA_{1}B_{1}C_{1} равны 6. Через середины рёбер AC и BB_{1} и вершину A_{1} проведена секущая плоскость.

а) Докажите, что ребро BC делится секущей плоскостью в отношении 2:1, считая от вершины C.

б) Найдите угол между плоскостью сечения и плоскостью основания.

Показать решение

Решение

а) Пусть D и E — середины ребер AC и BB_{1} соответственно.

Треугольная призма с секущей плоскостью

В плоскости AA_{1}C_{1} проведем прямую A_{1}D, которая пересекает прямую CC_{1} в точке K, в плоскости BB_{1}C_{1} — прямую KE, которая пересекает ребро BC в точке F. Соединие точки A_{1} и E, лежащие в плоскости AA_{1}B_{1}, а также D и F, лежащие в плоскости ABC, получим сечение A_{1}EFD.

\bigtriangleup AA_{1}D=\bigtriangleup CDK по катету AD=DC и острому углу.

\angle ADA_{1}=\angle CDK — как вертиальные, отсюда следует, что AA_{1}=CK=6. \bigtriangleup CKF и \bigtriangleup BFE подобны по двум углам \angle FBE=\angle KCF=90^\circ, \angle BFE=\angle CFK — как вертикальные.

\frac{CK}{BE}=\frac{6}{3}=2, то есть коэффициент подобия равен 2, откуда следует, что CF:FB=2:1.

б) Проведём AH \perp DF. Угол между плоскостью сечения и плоскостью основания равен углу AHA_{1}. Действительно, отрезок AH \perp DF (DF — линия пересечения этих плоскостей) и является проекцией отрезка A_{1}H на плоскость основания, следовательно, по теореме о трёх перпендикулярах, A_{1}H \perp DF. \angle AHA_{1}=arctg\frac{AA_{1}}{AH}. AA_{1}=6.

Найдём AH. \angle ADH =\angle FDC (как вертикальные).

Основание треугольной призмы

По теореме косинусов в \bigtriangleup DFC:

DF^2=FC^2+DC^2- 2FC \cdot DC \cdot \cos 60^\circ,

DF^2=4^2+3^2-2 \cdot 4 \cdot 3 \cdot \frac{1}{2}=13.

FC^2=DF^2+DC^2- 2DF \cdot DC \cdot \cos \angle FDC,

4^2=13+9-2\sqrt{13} \cdot 3 \cdot \cos \angle FDC,

\cos \angle FDC=\frac{6}{2\sqrt{13} \cdot 3}=\frac{1}{\sqrt{13}}.

По следствию из основного тригонометрического тождества

\sin \angle FDC=\sqrt{1-\left ( \frac{1}{\sqrt{13}}\right )^2}=\frac{2\sqrt{3}}{\sqrt{13}}. Из \bigtriangleup ADH найдём AH:

AH=AD \cdot \sin \angle ADH, (\angle FDC=\angle ADH). AH=3 \cdot \frac{2\sqrt{3}}{\sqrt{13}}=\frac{6\sqrt{13}}{\sqrt{13}}.

\angle AHA_{1}= arctg\frac{AA_{1}}{AH}= arctg\frac{6 \cdot \sqrt{13}}{6\sqrt{3}}= arctg\frac{\sqrt{39}}{3}.

Ответ

arctg\frac{\sqrt{39}}{3}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №985

Тип задания: 14
Тема: Площадь сечения

Условие

В основании пирамиды DABC лежит правильный треугольник ABC со стороной 5. Ребро CD перпендикулярно плоскости основания. Точки K, L и M лежат на рёбрах AD, BD и AC соответственно. Известно, что AD=10, DK=4, CM=2 и KL \parallel AB.

а) Постройте сечение пирамиды плоскостью KLM.

б) Найдите площадь этого сечения.

Показать решение

Решение

а) Построим MN \parallel AB.

Пирамида в основании которого правильный треугольник и сечение

Так как KL \parallel AB по условию, то KL \parallel MN. Это означает, что точки K, L, N и M лежат в одной плоскости, то есть KLNM — искомое сечение.

б) 1. \bigtriangleup MNC \sim \bigtriangleup ABC, так как MN \parallel AB, то есть соответственные углы равны: \angle CAB=\angle CMN и \angle CBA=\angle CNM. Значит \bigtriangleup MNC равносторонний, то есть CN=MN=CM=2.

2. Аналогично можно доказать, что \bigtriangleup DKL \sim \bigtriangleup DAB, так как KL \parallel AB. Значит, \frac{KL}{AB}=\frac{DK}{DA}=\frac{2}{5}, KL=\frac{2}{5}AB=\frac{2}{5} \cdot 5=2.

3. Так как KL \parallel MN и KL=MN, то KLNM — параллелограмм.

4. \bigtriangleup AMK \sim \bigtriangleup ACD, так как угол при вершине A общий и \frac{AK}{AD}=\frac{AM}{AC}=\frac{3}{5}. Следовательно, MK \parallel CD, так как соответственные углы равны (например, \angle AKM=\angle ADC). Отсюда, MK \perp ABC, так как CD \perp ABC. Значит, MK \perp MN, то есть параллелограмм KLNM является прямоугольником.

5. По теореме Пифагора CD= \sqrt{AD^2-AC^2}= \sqrt{10^2-5^2}= 5\sqrt{3}. Так как \frac{MK}{CD}=\frac{AM}{AC}=\frac{3}{5}, то MK=\frac{3}{5}CD=3\sqrt{3}.

6. S_{KLNM}= MK \cdot MN= 3\sqrt{3} \cdot 2= 6\sqrt{3}.

Ответ

6\sqrt{3}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №984

Тип задания: 14
Тема: Площадь сечения

Условие

Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.

а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD.

б) Найдите площадь этого сечения, если каждое ребро данной пирамиды равно 5.

Показать решение

Решение

а) Пусть K — середина ребра SC. Так как треугольники SDC и SBC равносторонние, то SC \perp DK и SC \perp BK (медиана равностороннего треугольника является его высотой). Значит, прямая SC перпендикулярна плоскости DKB. Так как SC \perp DKB и SC \subset CSD, то плоскость DBK перпендикулярна плоскости CSD. Треугольник DKB — искомое сечение.

Правильная четырёхугольная пирамида SABCD с равными ребрами и сечением

б) Найдём площадь сечения. Высоты DK и BK в равносторонних треугольниках равны \frac{5\sqrt{3}}{2}. Диагональ BD квадрата ABCD равна 5\sqrt{2}. В равнобедренном треугольнике DKB высота OK=\sqrt{\left ( \frac{5\sqrt{3}}{2}\right )^2-\left ( \frac{5\sqrt{2}}{2}\right )^2}=\frac{5}{2}. Площадь треугольника DKB равна \frac{1}{2}DB \cdot OK=\frac{1}{2} \cdot 5\sqrt{2} \cdot \frac{5}{2}=\frac{25\sqrt{2}}{4}.

Ответ

\frac{25\sqrt{2}}{4}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №983

Тип задания: 14
Тема: Угол между плоскостями

Условие

Основанием прямой призмы ABCDA_{1}B_{1}C_{1}D_{1} является ромб с тупым углом B, равным 120^\circ. Все ребра этой призмы равны 10. Точки P и K — середины ребер CC_{1} и CD соответственно.

а) Докажите, что прямые PK и PB_{1} перпендикулярны.

б) Найдите угол между плоскостями PKB_{1} и C_{1}B_{1}B.

Показать решение

Решение

а) Будем использовать метод координат. Найдём скалярное произведение векторов \vec{PK} и \vec{PB_{1}}, а затем косинус угла между этими векторами. Направим ось Oy вдоль CD, ось Oz вдоль CC_{1}, и ось Ox \perp CD. C — начало координат.

Прямая призма в трехмерном пространстве в основании которого лежит ромб

Тогда C (0;0;0); C_{1}(0;0;10); P (0;0;5); K (0;5;0); B (BC \cos 30^\circ; BC \sin 30^\circ; 0), то есть B(5\sqrt{3}; 5;0), B_{1}(5\sqrt{3}; 5;10).

Найдём координаты векторов: \vec{PK}=\{0;5;-5\}; \vec{PB_{1}}=\{5\sqrt{3}; 5;5\}.

Пусть угол между \vec{PK} и \vec{PB_{1}} равен \alpha.

Получаем \cos \alpha=\frac{\vec{PK} \cdot \vec{PB_{1}}}{|\vec{PK}| \cdot |\vec{PB_{1}}|}= \frac{0 \cdot 5\sqrt{3} + 5 \cdot 5-5 \cdot 5}{|\vec{PK}| \cdot |\vec{PB_{1}}|}=0.

\cos \alpha =0, значит, \vec{PK} \perp \vec{PB_{1}} и прямые PK и PB_{1} перпендикулярны.

б) Угол между плоскостями равен углу между ненулевыми векторами, перпендикулярными этим плоскостям (или, если угол тупой, смежному с ним углу). Такие векторы называют нормалями к плоскостям. Найдём их.

Пусть \vec{n_{1}}=\{x; y; z\} перпендикулярен плоскости PKB_{1}. Найдем его, решив систему \begin{cases} \vec{n_{1}} \perp \vec{PK}, \\ \vec{n_{1}} \perp \vec{PB_{1}}. \end{cases}

\begin{cases} \vec{n_{1}} \cdot \vec{PK}=0, \\ \vec{n_{1}} \cdot \vec{PB_{1}}=0; \end{cases}

\begin{cases} 0x+5y-5z=0, \\ 5\sqrt{3}x+5y+5z=0; \end{cases}

\begin{cases}y=z, \\ x=\frac{-y-z}{\sqrt{3}}. \end{cases}

Возьмем y=1; z=1; x=\frac{-2}{\sqrt{3}}, \vec{n_{1}}=\left \{ \frac{-2}{\sqrt{3}}; 1;1 \right \}.

Пусть \vec{n_{2}}=\{x; y; z\} перпендикулярен плоскости C_{1}B_{1}B. Найдем его, решив систему \begin{cases} \vec{n_{2}} \perp \vec{CC_{1}}, \\ \vec{n_{2}} \perp \vec{CB}. \end{cases}

\vec{CC_{1}}=\{0;0;10\}, \vec{CB}=\{5\sqrt{3}; 5; 0\}.

\begin{cases} \vec{n_{2}} \cdot \vec{CC_{1}}=0, \\ \vec{n_{2}} \cdot \vec{CB}=0; \end{cases}

\begin{cases} 0x+0y+10z=0, \\ 5\sqrt{3}x+5y+0z=0; \end{cases}

\begin{cases}z=0, \\ y=-\sqrt{3}x. \end{cases}

Возьмем x=1; y=-\sqrt{3}; z=0, \vec{n_{2}}=\{1; -\sqrt{3};0\}.

Найдем косинус искомого угла \beta (он равен модулю косинуса угла между \vec{n_{1}} и \vec{n_{2}}).

\cos \beta= \frac{|\vec{n_{1}} \cdot \vec{n_{2}}|}{|\vec{n_{1}}| \cdot |\vec{n_{2}}|}= \frac{\left | -\dfrac{2}{\sqrt{3}} \cdot 1+1 \cdot (-\sqrt{3})+1 \cdot 0 \right |}{\sqrt{\dfrac{4}{3}+1+1} \cdot \sqrt{1+3+0}}= \frac{\dfrac{5}{\sqrt{3}}}{2\sqrt{\dfrac{10}{3}}}= \frac{\sqrt{10}}{4}.

\cos \beta =\frac{\sqrt{10}}{4}, \beta=\arccos\frac{\sqrt{10}}{4}.

Ответ

\arccos\frac{\sqrt{10}}{4}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №982

Тип задания: 14
Тема: Площадь сечения

Условие

Дана правильная четырёхугольная пирамида SMNPQ с вершиной в точке S, сторона основания равна 5\sqrt{3}, а плоский угол при вершине пирамиды равен 60^\circ.

а) Постройте сечение пирамиды плоскостью, проходящей через диагональ NQ основания параллельно боковому ребру PS.

б) Найдите площадь сечения.

Показать решение

Решение

а) Обозначим через O точку пересечения диагоналей квадрата MNPQ.

Правильная четырёхугольная пирамида SMNPQ с треугольным сечением

В плоскости MSP проведем через точку O прямую OK \parallel PS. Точку K соединим с точкой N и точкой Q, получим сечение NKQ, которое является искомым, так как содержит OK \parallel PS и диагональ основания NQ, по признаку параллельности прямой и плоскости: плоскость NKQ параллельна ребру PS. Данное сечение представляет собой треугольник NKQ.

б) Треугольник NKQ — равнобедренный, NK=KQ. Это следует из равенства треугольников NKM и KMQ (по двум сторонам: MK — общая, NM=MQ и углу: \angle KMQ=\angle KMN). Точка O — середина NQ, NO=OQ. KO — медиана и, следовательно, высота. S_{NKQ}=\frac{1}{2}NQ \cdot KO.

Рассмотрим \bigtriangleup SMQ, \angle MSQ=60^\circ, значит \angle SMQ=\angle SQM=60^\circ,  SM=SQ=MQ=5\sqrt{3}. \angle SOM=90^\circ, точка K — середина SM (так как OK — средняя линия \bigtriangleup PSM). Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы. OK=\frac{1}{2}SM=\frac{5\sqrt{3}}{2}. NQ — диагональ квадрата со стороной 5\sqrt{3}. NQ=5\sqrt{3} \cdot \sqrt{2}=5\sqrt{6}.

S_{NKQ}= \frac{1}{2}OK \cdot NQ= \frac{5\sqrt{3} \cdot 5\sqrt{6}}{4}= \frac{75\sqrt{2}}{4}.

Ответ

\frac{75\sqrt{2}}{4}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №981

Тип задания: 14
Тема: Угол между плоскостями

Условие

В правильной четырёхугольной призме ABCDA_{1}B_{1}C_{1}D_{1} на ребре AA_{1} взята точка M так, что AM:MA_{1}=2:3.

а) Постройте сечение призмы плоскостью, проходящей через точки D и M параллельно диагонали основания AC.

б) Найдите угол между плоскостью сечения и плоскостью основания, если AA_{1}=5\sqrt{6}, AB=4.

Показать решение

Решение

а) По условию ABCDA_{1}B_{1}C_{1}D_{1} — правильная призма, это означает, что основание ABCD — квадрат и боковые грани — равные прямоугольники.

Правильная четырёхугольная призма с квадратным основанием и равными боковыми гранями

Так как плоскость сечения проходит через точки M и D параллельно диагонали AC, то для её построения в плоскости A_{1}AC через точку M проведём отрезок MN параллельный AC. Получим AC \parallel (MDN) по признаку параллельности прямой и плоскости.

Плоскость MDN пересекает параллельные плоскости A_{1}AD и B_{1}BC, тогда, по свойству параллельных плоскостей, линии пересечения граней A_{1}ADD_{1} и B_{1}BCC_{1} плоскостью MDN параллельны.

Проведём отрезок NE параллельно отрезку MD.

Четырехугольник DMEN — искомое сечение.

б) Найдём угол между плоскостью сечения и плоскостью основания. Пусть плоскость сечения пересекает плоскость основания по некоторой прямой p, проходящей через точку D. AC \parallel MN, следовательно, AC \parallel p (если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна этой прямой). BD \perp AC как диагонали квадрата, значит, BD \perp p. BD — проекция ED на плоскость ABC, тогда по теореме о трех перпендикулярах ED \perp p, следовательно, \angle EDB — линейный угол двугранного угла между плоскостью сечения и плоскостью основания.

Установим вид четырехугольника DMEN. MD \parallel EN, аналогично ME \parallel DN, значит, DMEN — параллелограмм, а так как MD=DN (прямоугольные треугольники MAD и NCD равны по двум катетам: AD=DC как стороны квадрата, AM=CN как расстояния между параллельными прямыми AC и MN), следовательно, DMEN — ромб. Отсюда, F — середина MN.

По условию AM:MA_{1}=2:3, тогда AM=\frac{2}{5}AA_{1}=\frac{2}{5} \cdot 5\sqrt{6}=2\sqrt{6}.

AMNC — прямоугольник, F — середина MN, O — середина AC. Значит, FO\parallel MA,  FO \perp AC,  FO=MA=2\sqrt{6}.

Зная, что диагональ квадрата равна a\sqrt{2}, где a — сторона квадрата, получим BD=4\sqrt{2}. OD=\frac{1}{2}BD=\frac{1}{2} \cdot 4\sqrt{2}=2\sqrt{2}.

В прямоугольном треугольнике FOD\enspace tg \angle FDO=\frac{FO}{OD}=\frac{2\sqrt{6}}{2\sqrt{2}}=\sqrt{3}. Следовательно, \angle FDO=60^\circ.

Ответ

60^\circ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №980

Тип задания: 14
Тема: Объем тела

Условие

В правильной четырехугольной пирамиде SABCD сторона основания AB=16, высота SO=6. На апофеме ST грани BSC отмечена точка K так, что SK=8. Плоскость \gamma параллельна прямой BC и содержит точки K и A.

а) Докажите, что расстояние от точки B до плоскости \gamma равно расстоянию от точки C до плоскости \gamma.

б) Найдите объем пирамиды, вершина которой точка B, а основание — сечение данной пирамиды плоскостью \gamma.

Показать решение

Решение

Построим сначала сечение пирамиды плоскостью \gamma.

Четырехугольная пирамида SABCD с сечением

а) Плоскость \gamma пересекает плоскость SAD по прямой AD, а плоскость SBC — по прямой MN, проходящей через точку K, параллельной BC (если плоскость проходит через прямую, параллельную другой плоскости, и пересекает её, то линия пересечения параллельна этой прямой). ADNM — сечение пирамиды плоскостью \gamma. ADNM — равнобедренная трапеция.

BC \parallel \gamma, следовательно, все точки, принадлежащие прямой BC, равноудалены от плоскости \gamma. Значит, расстояние от точки B до плоскости \gamma равно расстоянию от точки C до плоскости \gamma. Что и требовалось доказать.

б) Так как расстояние от любой точки прямой BC до плоскости \gamma одно и то же, будем искать расстояние от точки T до плоскости \gamma, то есть нужно из точки T провести отрезок TH, перпендикулярный плоскости ADN, который равен высоте пирамиды BADNM. Тогда V_{BADNM}=\frac{1}{3}S_{ADNM} \cdot TH.

K — середина отрезка MN, так как принадлежит апофеме ST. Обозначим через P середину отрезка AD, тогда KP \perp AD как высота равнобедренной трапеции ADNM. S_{BADNM}=\frac{AD+MN}{2} \cdot PK.

Четырехугольная пирамида SABCD с сечением и отмеченной точкой P на отрезке AD

AD \perp PST, действительно, KP \perp AD и PT \perp AD, следовательно, достаточно построить отрезок TH \perp PK, так как тогда TH перпендикулярна двум пересекающимся прямым плоскости \gamma (AD и PK).

Плоскость PST четырехугольной пирамиды SABCD

S_{\bigtriangleup PKT} выразим двумя способами:

\frac{1}{2} TH \cdot PK=\frac{1}{2} PT \cdot KL, откуда TH=\frac{PT \cdot KL}{PK}.

Из прямоугольного треугольника SOT с катетами OT=8, SO=6 и гипотенузой ST по теореме Пифагора ST=10, находим KL из подобия прямоугольных треугольников SOT и KLT с общим острым углом STO:

\frac{SO}{KL}=\frac{ST}{KT}=\frac{OT}{LT}, \frac{6}{KL}=\frac{10}{2}, KL=\frac{6}{5}. Далее \frac{8}{LT}=\frac{10}{2}, LT=\frac{8}{5}, OL=OT-LT=8-\frac{8}{5}=\frac{32}{5}.

PK найдем по теореме Пифагора из прямоугольного треугольника PKL:

PK^{2}= PL^{2}+LK^{2}= (PO+OL)^{2}+LK^{2},

PK^{2}= \left ( 8+\frac{32}{5} \right )^{2}+\left ( \frac{6}{5}\right )^{2}= \frac{5220}{25} \cdot PK= \frac{6\sqrt{145}}{5}.

TH=\frac{PT \cdot KL}{PK}=\frac{16 \cdot \dfrac{6}{5}}{\dfrac{6\sqrt{145}}{5}}=\frac{16}{\sqrt{145}}.

Основание MN равнобедренной трапеции найдем из подобия треугольников SMN и SBC, высоты которых SK=8, ST=10.

\frac{MN}{BC}=\frac{SK}{ST}, \frac{MN}{16}=\frac{8}{10}, откуда MN=\frac{64}{5}.

V_{BADNM}= \frac{1}{3} \cdot \frac {AD+MN}{2} \cdot PK \cdot TH= \frac{1}{3} \cdot \frac{16+\dfrac{64}{5}}{2} \cdot \frac{6\sqrt{145}}{5} \cdot \frac{16}{\sqrt{145}}= 92,16.

Ответ

92,16

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №966

Условие

В правильной треугольной пирамиде DABC с основанием ABC сторона основания равна 6\sqrt{3}, а высота пирамиды равна 8. На ребрах AB, AC и AD соответственно отмечены точки M, N и K, такие, что AM=AN=\frac{3\sqrt{3}}{2} и AK=\frac{5}{2}.

а) Докажите, что плоскости MNK и DBC параллельны.

б) Найдите расстояние от точки K до плоскости DBC.

Показать решение

Решение

а) Плоскости MNK и DBC параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Докажем это. Рассмотрим прямые MN и KM плоскости MNK и прямые BC и DB плоскости DBC.

Правильная треугольная пирамида с внутренней плоскостью

В треугольнике AOD: \angle AOD = 90^\circ и по теореме Пифагора AD=\sqrt{DO^2 +AO^2}.

Найдём AO, используя то, что \bigtriangleup ABC правильный.

AO=\frac{2}{3}AO_1, где AO_1 — высота \bigtriangleup ABC, AO_1 = \frac{a\sqrt{3}}{2}, где a — сторона \bigtriangleup ABC.

AO_1 = \frac{6\sqrt{3} \cdot \sqrt{3}}{2}=9, тогда AO=6, AD=\sqrt{8^2 + 6^2}=10.

1. Так как \frac{AK}{AD}=\frac{5}{2} : 10=\frac{1}{4}, \frac{AM}{AB}=\frac{3\sqrt{3}}{2} : 6\sqrt{3}=\frac{1}{4} и \angle DAB — общий, то \bigtriangleup AKM \sim ADB.

Из подобия следует, что \angle AKM = \angle ADB. Это соответственные углы при прямых KM и BD и секущей AD. Значит KM \parallel BD.

2. Так как \frac{AN}{AC}=\frac{3 \sqrt{3}}{2 \cdot 6 \sqrt{3}}=\frac{1}{4}, \frac{AM}{AB}=\frac{1}{4} и \angle CAB — общий, то \bigtriangleup ANM \sim \bigtriangleup ACB.

Из подобия следует, что \angle ANM = \angle ACB. Эти углы соответственные при прямых MN и BC и секущей AC. Значит, MN \parallel BC.

Вывод: так как две пересекающиеся прямые KM и MN плоскости MNK соответственно параллельны двум пересекающимся прямым BD и BC плоскости DBC, то эти плоскости параллельны — MNK \parallel DBC.

б) Найдём расстояние от точки K до плоскости BDC.

Поскольку плоскость MNK параллельна плоскости DBC, то расстояние от точки K до плоскости DBC равно расстоянию от точки O_2 до плоскости DBC и оно равно длине отрезка O_2 H. Докажем это.

Проекция плоскости правильной треугольной пирамиды

BC \perp AO_1 и BC \perp DO_1 (как высоты треугольников ABC и DBC), значит, BC перпендикулярна плоскости ADO_1, и тогда BC перпендикулярна любой прямой этой плоскости, например, O_2 H. По построению O_2 H \perp DO_1, значит, O_2 H перпендикулярна двум пересекающимся прямым плоскости BCD, и тогда отрезок O_2 H перпендикулярен плоскости BCD и равен расстоянию от O_2 до плоскости BCD.

В треугольнике O_2 HO_1:O_2 H=O_{2}O_{1} \sin \angle HO_{1}O_{2}.

O_{2}O_{1}=AO_{1}-AO_{2}.\, \frac{AO_2}{AO_1}=\frac{1}{4}, AO_{2}=\frac{AO_1}{4}=\frac{9}{4}.

O_{2}O_{1}=9-\frac{9}{4}=\frac{27}{4}.

\sin \angle DO_{1}A= \frac{DO}{DO_{1}}= \frac{8}{\sqrt{64+3^2}}= \frac{8}{\sqrt{73}}.

O_2H=\frac{27}{4} \cdot \frac{8}{\sqrt{73}}=\frac{54}{\sqrt{73}}.

Ответ

\frac{54}{\sqrt{73}}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №959

Тип задания: 14
Тема: Площадь сечения

Условие

В прямоугольном параллелепипеде ABCDA_1 B_1 C_1 D_1 стороны оснований AB и BC равны соответственно 8 и 5, а боковое ребро AA_1 равно 4. На ребре A_1 B_1 отмечена точка K, а на луче BC — точка F, причем A_1 K=KB_1 и BF=AB. Плоскость AKF пересекает ребро B_1 C_1 в точке P.

а) Докажите, что B_1 P:PC_1=4:1.

б) Найдите площадь сечения параллелепипеда плоскостью AKF.

Показать решение

Решение

а) Построим сечение параллелепипеда плоскостью AKF.

Параллелепипед с сечением, образованным плоскостью

E — точка пересечения ребра DC и отрезка AF.

В плоскости ABB_1 проведем лучи AK и BB_1. AK пересекает BB_1 в точке Q. В плоскости BCC_1 проведем отрезок FQFQ пересекает B_1C_1 в точке P, а CC_1 в точке R. Пятиугольник AKPRE — искомое сечение.

KB_1 \parallel AB, KB_1=\frac{1}{2}A_1 B_1, значит KB_1 — средняя линия \bigtriangleup ABQ, отсюда BB_1=QB_1, а так как BF \parallel B_1 P, то B_1 P — средняя линия \bigtriangleup FBQ, BF=8, B_1 P=\frac{1}{2}BF=4. C_1 P=B_1C_1-B_1 P=5-4=1, следовательно, B_1 P:PC_1=4:1.

б) Прямоугольние треугольники ABQ, FBQ и ABF равны по двум катетам AB=BF=BQ=8, отсюда AQ=AF=QF=8\sqrt{2}.

S_{AQF}=\frac{a^{2}\sqrt{3}}{4} как площадь равностороннего треугольника со стороной a.

S_{AQF}=\frac{(8\sqrt{2})^{2} \cdot \sqrt{3}}{4}=32\sqrt{3},

S_{KQP}= \frac{1}{4}S_{AQF}= \frac{32\sqrt{3}}{4}= 8\sqrt{3}.

S_{AKPF}= S_{AQF}-S_{KQP}= 32\sqrt{3}-8\sqrt{3}= 24\sqrt{3}.

\bigtriangleup RCF \sim \bigtriangleup RC_1 P по первому признаку подобия (\angle C=\angle C_1=90^{\circ}, \angle1=\angle2 как вертикальные). Из подобия следует \frac{CF}{PC_{1}}=\frac{FR}{PR}. По доказанному в а) PC_1=1, BF=AB=8, тогда CF=8-5=3 и \frac{FR}{PR}=\frac{3}{1}. Так как KP — средняя линия \bigtriangleup AQF, то PF=\frac{1}{2}QF=4\sqrt{2}, FR=\frac{3PF}{4}=\frac{4\sqrt{2} \cdot 3}{4}=3\sqrt{2}.

В равнобедренном прямоугольном треугольнике FCE FC=EC=3, тогда EF=3\sqrt{2}. В \bigtriangleup REFFR=EF=3\sqrt{2}, \angle RFE=60^{\circ}, отсюда \bigtriangleup REF — равносторонний.S_{REF}=\frac{(3\sqrt{2})^2\sqrt{3}}{4}=\frac{9\sqrt{3}}{2}.

S_{AKPRE}= S_{AKPF}-S_{REF}= 24\sqrt{3}-\frac{9\sqrt{3}}{2}= \frac{39\sqrt{3}}{2}.

Ответ

\frac{39\sqrt{3}}{2}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.