Задания по теме «Точки экстремума функции»

Открытый банк заданий по теме точки экстремума функции. Задания B12 из ЕГЭ по математике (профильный уровень)

Задание №957

Тип задания: 12
Тема: Тригонометрические функции

Условие

Найдите точку максимума функции y=(4x-5)\cos x-4\sin x+12, принадлежащую промежутку \left ( 0; \frac{\pi}{2} \right ).

Показать решение

Решение

Найдём производную исходной функции: y'= (4x-5)'\cos x+(4x-5)(\cos x)'-4(\sin x)'+(12)'= 4\cos x+(4x-5)\cdot(-\sin x)-4\cos x= -(4x-5)\sin x.

Найдём нули производной на интервале \left ( 0; \frac{\pi}{2} \right ), учитывая, что на этом множестве \sin x>0.

Имеем -(4x-5)\sin x=0,

4x-5=0,

x=\frac54.

Значение x=\frac54 принадлежит интервалу \left ( 0; \frac{\pi}{2} \right ). При x\in\left ( 0; \frac54 \right ) выполняется неравенство y'(x)>0. При x\in\left ( \frac54; \frac{\pi}{2} \right ) выполняется неравенство y'(x)<0. Отсюда x=\frac54=1,25 является единственной точкой максимума на рассматриваемом интервале.

Поведение функции на числовой оси со знаками производной

Ответ

1,25
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №956

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите наибольшее значение функции y=(51-x)e^{x-50} на отрезке [42; 70].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения

y'= (51-x)'e^{x-50}+(51-x)\left ( e^{x-50} \right )'= -e^{x-50}+(51-x)e^{x-50}= (50-x)e^{x-50}.

Найдём нули производной: y'=0.

(50-x)e^{x-50}=0,

x=50.

Заметим, что при x<50 выполняется неравенство y'>0, при x>50 выполняется неравенство y'<0. Значит, функция y=(51-x)e^{x-50} возрастает при x<50 и убывает при x>50.

Поведение функции на числовой оси со знаками производной

Значение x=50 принадлежит отрезку [42; 70], наибольшее значение на указанном отрезке достигается при x=50 и равно y(50)=(51-50)e^{50-50}=1.

Ответ

1
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №955

Тип задания: 12
Тема: Тригонометрические функции

Условие

Найдите наибольшее значение функции y=18\cos x+9\sqrt3 x-3\sqrt3 \pi+16 на отрезке \left [ 0; \frac{\pi}{2} \right ].

Показать решение

Решение

Найдём производную исходной функции: y'=-18\sin x+9\sqrt3. Вычислим нули производной: y'=0.

-18\sin x+9\sqrt3=0,

\sin x=\frac{\sqrt3}{2}.

На отрезке \left [ 0; \frac{\pi}{2} \right ] этому уравнению удовлетворяет только x=\frac{\pi}{3}. Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом отрезке.

Поведение функции на числовой оси со знаками производной

Из рисунка видно, что при x<\frac{\pi}{3} выполняется y'(x)>0 и исходная функция возрастает. Аналогично при x>\frac{\pi}{3} выполняется y'(x)<0 и исходная функция убывает. Значит, наибольшее значение достигается при x=\frac{\pi}{3} и равно y\left ( \frac{\pi}{3} \right )= 18\cos\frac{\pi}{3}+9\sqrt3\cdot\frac{\pi}{3}-3\sqrt3 \pi+16= 9+16=25.

Ответ

25
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №954

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите точку максимума функции y=(8-x)e^{x+12}.

Показать решение

Решение

Найдём производную исходной функции, воспользовавшись формулой производной произведения:

y'(x)= (8-x)'e^{x+12}+(8-x)\left ( e^{x+12} \right )'= -e^{x+12}+(8-x)e^{x+12}= (7-x)e^{x+12}.

y'(x)=0 при x=7. При этом y'(x)>0 при x<7, y'(x)<0 при x>7.

Поведение функции на числовой оси со знаками производной

Таким образом, x=7 является единственной точкой максимума.

Ответ

7
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №953

Тип задания: 12
Тема: Иррациональные функции

Условие

Найдите наименьшее значение функции y=x\sqrt x-6x+2000 на отрезке [2; 30].

Показать решение

Решение

ОДЗ x\geqslant0. Преобразуем исходную функцию y=x\cdot x^{\tfrac12}-6x+2000,

y=x^{1+\tfrac12}-6x+2000,

y=x^{\frac32}-6x+2000.

Найдём производную: y'=\frac32x^{\tfrac12}-6.

Вычислим нули производной: \frac32x^{\tfrac12}-6=0,

x^{\tfrac12}=4,

x=16.

Расставим знаки производной и определим промежутки монотонности исходной функции

Поведение функции на числовой оси со знаками производной

Из рисунка видно, что на отрезке [2; 16] исходная функция убывает, а на отрезке [16; 30] — возрастает. Таким образом, наименьшее значение на отрезке [2; 30] достигается при x=16 и равно y(16)= 16\sqrt{16}-6\cdot16+2000= 64-96+2000=1968.

Ответ

1968
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №952

Тип задания: 12
Тема: Логарифмические функции

Условие

Найдите наибольшее значение функции y=\ln(x+7)^9-9x на отрезке [-6,5; 0].

Показать решение

Решение

ОДЗ. (x+7)^9>0,  x+7>0,  x>-7.

Так как на ОДЗ \ln(x+7)^9=9\ln(x+7), то исходная функция примет вид: y=9\ln(x+7)-9x. Найдём производную: y'=\frac{9}{x+7}-9.

Определим нули производной

\frac{9}{x+7}-9=0,

\frac{1}{x+7}=1,

x=-6.

Расставим знаки производной и определим промежутки монотонности исходной функции

Поведение функции на числовой оси со знаками производной

Из рисунка видно, что на отрезке [-6,5; -6] исходная функция возрастает, а на отрезке [-6; 0] — убывает. Таким образом, наибольшее значение на отрезке [-6,5; 0] достигается при x=-6 и равно y(-6)=\ln(-6+7)^9-9\cdot(-6)=54.

Ответ

54
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №951

Тип задания: 12
Тема: Степенные функции

Условие

Найдите точку максимума функции y=(x+7)^2(x-6)+11.

Показать решение

Решение

Найдём производную исходной функции, используя формулу производной произведения:

y'= \left ( (x+7)^2 \right )'(x-6)+(x+7)^2(x-6)'+(11)'= 2(x+7)(x-6)+(x+7)^2= (x+7)(2x-12+x+7)= (x+7)(3x-5).

Отыщем нули производной:

y'(x)=0;

(x+7)(3x-5)=0,

x_1=-7,\,x_2=\frac53.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Поведение функции на числовой оси со знаками производной

Из рисунка видно, что x=-7 является единственной точкой максимума.

Ответ

-7
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №950

Тип задания: 12
Тема: Рациональные функции

Условие

Найдите точку максимума функции y=-\frac{x^2+144}{x}.

Показать решение

Решение

Исходная функция определена при x\neq0, при этом y=-x-\frac{144}{x}. Тогда производная исходной функции y'(x)=-1+\frac{144}{x^2}. Найдем нули производной: y'(x)=0 при \frac{144}{x^2}=1, x^2=144, x=\pm12. Расставим знаки производной и определим промежутки монотонности исходной функции.

Поведение функции на числовой оси со знаками производной

Из рисунка видно, что функция y=-\frac{x^2+144}{x} имеет единственную точку максимума x=12.

Ответ

12
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №949

Тип задания: 12
Тема: Степенные функции

Условие

Найдите точку максимума функции y= 2x^3+40x^2+200x+79.

Показать решение

Решение

Найдём производную исходной функции: y'(x)=6x^2+80x+200.

Найдём нули производной из уравнения y'(x)=0;

6x^2+80x+200=0;

3x^2+40x+100=0,

x_{1,2}=\frac{-20\pm\sqrt{20^2-3\cdot100}}{3}=\frac{-20\pm10}{3}. Отсюда x_1=-10, x_2=-\frac{10}{3}.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Поведение функции на числовой оси со знаками производной

Из рисунка видно, что значение x=-10 является единственной точкой максимума.

Ответ

-10
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №948

Тип задания: 12
Тема: Иррациональные функции

Условие

Рассмотрите функцию y=\sqrt{x^2+40x+625} и найдите её наименьшее значение.

Показать решение

Решение

Для неотрицательных t функция \sqrt t возрастает, значит, \sqrt t наименьшее при наименьшем значении t. Преобразуем выражение под знаком корня.

Заметим, что x^2+40x+625= x^2+2\cdot20x+20^2+(625-20^2)= (x^2+40x+400)+225= (x+20)^2+225\geqslant225, причём при x=-20 достигается равенство.

Отсюда \sqrt{x^2+40x+625}\geqslant\sqrt{225}=15. При x=-20 имеем \sqrt{(-20)^2+40\cdot(-20)+625}=\sqrt{(-20+20)^2+225}=\sqrt{225}=15.

Таким образом, наименьшее значение функции равно 15.

Ответ

15
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.