Задание №1076

Тип задания: 8
Тема: Призма

Условие

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 40 см. На какой высоте будет находиться уровень воды, если её перелить в другой сосуд такой же формы, у которого сторона основания в два раза больше, чем у первого? Ответ выразите в сантиметрах.

правильная треугольная призма с водой

Показать решение

Решение

Пусть a — сторона основания первого сосуда, тогда 2a — сторона основания второго сосуда. По условию объём жидкости V в первом и втором сосуде один и тот же. Обозначим через H уровень, на который поднялась жидкость во втором сосуде. Тогда V= \frac12\cdot a^2\cdot\sin60^{\circ}\cdot40= \frac{a^2\sqrt3}{4}\cdot40, и, V=\frac{(2a)^2\sqrt3}{4}\cdot H. Отсюда \frac{a^2\sqrt3}{4}\cdot40=\frac{(2a)^2\sqrt3}{4}\cdot H, 40=4H, H=10.

Ответ

10
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены

Лучшие репетиторы для сдачи ЕГЭ