Задание №1127

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите точку максимума функции y=(x+3)^2e^{x-2016}.

Показать решение

Решение

Будем находить точку максимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y'(x)= \left((x+3)^2\right)'e^{x-2016}+(x+3)^2\left(e^{x-2016}\right)'= 2(x+3)e^{x-2016}+(x+3)^2e^{x-2016}= (x+3)e^{x-2016}(2+x+3)= (x+3)(x+5)e^{x-2016}.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Так как e^{x-2016}>0 для любого x, то y'=0 при x=-3,  x=-5.

Знаки производной и промежутки монотонности функции

Из рисунка видно, что функция y=(x+3)^2e^{x-2016} имеет единственную точку максимума x=-5.

Ответ

-5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928