Задание №1171

Условие

а) Решите уравнение 125^x-3\cdot 25^x-5^{x+2}+75=0.

б) Укажите все корни этого уравнения, принадлежащие отрезку [\log_54; \log_511).

Показать решение

Решение

а) Преобразуем исходное уравнение и разложим на множители его левую часть.

5^{3x}-3\cdot 5^{2x}-25\cdot 5^x+25\cdot 3=0,

5^{2x}(5^x-3)-25(5^x-3)=0,

(5^x-3)(5^{2x}-25)=0.

Получаем: 5^x-3=0 или 5^{2x}-25=0.

5^x-3=0, x=\log_53 или 5^{2x}=25, x=1.

б) Нам нужно выбрать те корни уравнения, которые принадлежат отрезку [\log_5 4; \log_5 11]. Заметим, что \log_5 3<\log_5 4<1<\log_5 11, значит, указанному отрезку принадлежит корень x=1.

Ответ

а) 1; \log_5 3;

б) 1.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928