Задание №186

Условие

а) Решите уравнение 4-\cos ^{2}2x=3\sin^{2}2x+2\sin 4x

б) Найдите все корни этого уравнения, принадлежащие промежутку [0;1].

Показать решение

Решение

а) Представим 4=4(\sin ^{2}2x+\cos^{2}2x).

Получим \sin^22x+3\cos^22x-4\sin2x\cdot \cos2x=0.

Если \cos^22x=0, то \sin^22x=0, что невозможно. Поэтому \cos^22x\neq 0.

Разделим обе части уравнения на \cos^22x.

tg^22x+3-4tg2x=0

tg^22x-4tg2x+3=0.

tg2x=2\pm\sqrt{4-3}=2\pm1.

1) tg2x=1;

2x=arctg1+\pi n;

2x=\frac{\pi}{4}+\pi n;

x=\frac{\pi}{8}+\frac{\pi n}{2}, n\in \mathbb{Z} .

2) tg2x=3;

2x=arctg3+\pi k;

x=\frac{1}{2}arctg3+\frac{\pi k}{2}, k\in \mathbb{Z}.

корни на числовой окружности на промежутке

б) Найдем корни уравнения, принадлежащие промежутку [0;1].

Так как 0<arctg3<\frac{\pi}{2}, 0<\frac{1}{2}arctg3<\frac{\pi}{4}<1, то \frac{1}{2}arctg3 является решением. 0<\frac{\pi}{8}<\frac{\pi}{4}<1, значит, \frac{\pi}{8} также является решением.

Другие решения не попадут в промежуток [0;1], так как они получаются из чисел \frac{1}{2}arctg3 и \frac{\pi}{8} прибавлением чисел, кратных \frac{\pi}{2}.

Ответ

а) \frac{\pi}{8}+\frac{\pi n}{2}, n\in \mathbb{Z};\; \frac{arctg3}{2}+\frac{\pi k}{2}, k\in \mathbb{Z} ;

б) \frac{\pi}{8}, \frac{arctg3}{2}.

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Заказать работу на Академии ЕГЭ

Рефераты, доклады, презентации, сочинения и другие работы

В течение 15 минут мы ответим вам

Что нужно сделать?
Введите имя
Укажите электронную почту

Сообщение отправлено

С вами свяжется наш специалист для обсуждения деталей

Вы что-то пропустили

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены