Задание №65

Тип задания: 6
Тема: Прямоугольный треугольник

Условие

Треугольник ABC имеет прямой угол C = 90^{\circ}, AC = 5, \cos A = \frac45. Найдите высоту CH.

Треугольник ABC

Показать решение

Решение

Рассмотрим треугольник ACH. Мы знаем, что косинус угла равен отношениею прилежащего катета к гипотенузе, значит:

\cos A = \frac{AH}{AC}

AH=AC\cdot \cos A=5\cdot\frac{4}{5}=4

Используя теорему Пифагора, найдем высоту CH:

CH^2=AC^2-AH^2=25-16=9

CH=\sqrt{9}=3

 

Ответ

3

Рассказать друзьям

Заказать работу на Академии ЕГЭ

Рефераты, доклады, презентации, сочинения и другие работы

В течение 15 минут мы ответим вам

Что нужно сделать?
Введите имя
Укажите электронную почту

Сообщение отправлено

С вами свяжется наш специалист для обсуждения деталей

Пожалуйста, ожидайте звонка в дневное время с 9 до 21 часов

Вы что-то пропустили

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены