Задание №90

Условие

График дифференцируемой функции y=f(x) и касательная к графикуНа рисунке изображены график дифференцируемой функции y=f(x) и касательная к графику в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

График дифференцируемой функции y=f(x) и касательная с образованным треугольникомЗначением производной функции в точке является угловой коэффициент касательной к графику функции в этой точке и равно тангенсу угла наклона касательной к оси Ox.

Построим прямоугольный треугольник ABC и по рисунку найдем тангенс угла ACB, смежного с углом наклона касательной к оси Ox.

Тангенс угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему:

tg\angle ACB=\frac{AB}{BC}

На рисунке видно, что противолежащий катет AB = −3, а прилежащий BC = 6, значит:

f'(x_0)=tg\angle ACB=\frac{-3}{6}=-0,5

Ответ

-0,5

Рассказать друзьям

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены

Диана Тажигулова / 

почему -3?