Задания по теме «Теория вероятностей»

Открытый банк заданий по теме теория вероятностей. Задания B4 из ЕГЭ по математике (профильный уровень)

Задание №1060

Условие

На заводе керамической плитки 5% произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40% дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.

Показать решение

Решение

При контроле качества продукции выявляется 40% дефектных плиток, которые составляют 5% от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2% от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98% поступает в продажу.

Не имеет дефектов 100% − 95% произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98% = \frac{95}{98}\approx 0,97

Ответ

0,97
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1059

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A \cap B, его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,85\cdot 0,85 = 0,7225.

Ответ

0,7225
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1058

Условие

Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе в течение года было продано 1200 стиральных машин, из которых 72 штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?

Показать решение

Решение

Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна \frac{72}{1200} = 0,06. От вероятности она отличается на 0,065-0,06=0,005.

Ответ

0,005
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1057

Условие

Вероятность того, что ручка бракованная, равна 0,05. Покупатель в магазине приобретает случайную упаковку, которая содержит две такие ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий A\cap B, его вероятность равна P(A\cap B) = P(A)\cdot P(B) = 0,95\cdot 0,95 = 0,9025.

Ответ

0,9025
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1056

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Лабиринт, в котором случайным образом движется жук

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Лабиринт, в котором случайным образом движется жук с ходами к выходу Д

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна \frac12\cdot\frac12\cdot\frac12\cdot\frac12= 0,5^4= 0,0625.

Ответ

0,0625
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1055

Условие

В секции 16 спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4 равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.

Показать решение

Решение

Сформируем группы по 16 : 4 = 4 (человека), последовательно помещая спортсменов на свободные места, при этом начнём с Оли и Маши. Сначала поместим Олю на случайно выбранное место из 16. Теперь помещаем на свободное место Машу (исходом этого эксперимента будем считать выбор места для неё). Всего имеется 15 свободных мест (одно уже заняла Оля), поэтому всего возможны 15 исходов. В одной группе с Олей останется 3 свободных места, поэтому событию «Оля и Маша в одной группе» благоприятствуют 3 исхода. Вероятность этого события равна \frac{3}{15}=0,2.

Ответ

0,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1054

Условие

В группе туристов 50 человек. Их микроавтобусом в несколько приёмов завозят к отправной точке маршрута по 10 человек за рейс. Порядок перевозки туристов случаен. Найдите вероятность того, что турист П. отправится в первом рейсе микроавтобуса.

Показать решение

Решение

Пусть выбор места в микроавтобусе — исход, выбор места в первом микроавтобусе — благоприятный исход. Общее число исходов равно 50 (общее число мест), благоприятных исходов 10 (число мест на первом рейсе). По определению, вероятность равна \frac{10}{50}=0,2.

Ответ

0,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1053

Условие

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 7»?

Показать решение

Решение

Исходом будем считать пару чисел: очки при первом и втором броске. Тогда указанному событию благоприятствуют следующие исходы: 1-6, 2-5, 3-4, 4-3, 5-2, 6-1. Их количество равно 6.

Ответ

6
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1052

Условие

В классе 25 человек. С помощью жребия они выбирают трёх человек, которые должны пойти на митинг. Найдите вероятность того, что обучающийся в этом классе ученик К., пойдёт на митинг.

Показать решение

Решение

Пусть по жребию пойдут на митинг три человека, которые выберут жребии с номерами «1», «2» и «3» из 25 возможных. Пусть исходом будет получение учеником К. определённого номера. Тогда общее число исходов равно 25, благоприятных исходов 3. По определению, вероятность равна \frac{3}{25}=0,12.

Ответ

0,12
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1051

Условие

Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.

Показать решение

Решение

Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A \cap B, его вероятность равна P(A \cap B) =  P(A) \cdot P(B) =  0,4 \cdot 0,4 =  0,16 (так как события A и B независимы).

Искомая вероятность равна 1 - P(A \cap B) =  1 - 0,16 =  0,84.

Ответ

0,84
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.