Задания по теме «Точки экстремума функции»

Открытый банк заданий по теме точки экстремума функции. Задания B12 из ЕГЭ по математике (профильный уровень)

Задание №1136

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите наибольшее значение функции y=(7x^2-56x+56)e^x на отрезке [-3; 2].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения y'= (7x^2-56x+56)'e^x\,+ (7x^2-56x+56)\left(e^x\right)'= (14x-56)e^x+(7x^2-56x+56)e^x= (7x^2-42x)e^x= 7x(x-6)e^x. Вычислим нули производной: y'=0;

7x(x-6)e^x=0,

x_1=0,  x_2=6.

Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.

Знаки производной и промежутки монотонности функции

Из рисунка видно, что на отрезке [-3; 0] исходная функция возрастает, а на отрезке [0; 2] — убывает. Таким образом, наибольшее значение на отрезке [-3; 2] достигается при x=0 и равно y(0)= 7\cdot 0^2-56\cdot 0+56=56.

Ответ

56
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1135

Тип задания: 12
Тема: Тригонометрические функции

Условие

Найдите наибольшее значение функции y=12x-12tg x-18 на отрезке \left[0;\,\frac{\pi}{4}\right].

Показать решение

Решение

Найдём производную исходной функции:

y'= (12x)'-12(tg x)'-(18)'= 12-\frac{12}{\cos ^2x}= \frac{12\cos ^2x-12}{\cos ^2x}\leqslant0. Значит, исходная функция является невозрастающей на рассматриваемом промежутке и принимает наибольшее значение на левом конце отрезка, то есть при x=0. Наибольшее значение равно y(0)= 12\cdot 0-12 tg (0)-18= -18.

Ответ

-18
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1134

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите точку минимума функции y=(x+8)^2e^{x+52}.

Показать решение

Решение

Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y'(x)= \left((x+8)^2\right)'e^{x+52}+(x+8)^2\left(e^{x+52}\right)'= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.

Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x. y'=0 при x=-8,  x=-10. 

Знаки производной и промежутки монотонности функции

Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.

Ответ

-8
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1133

Тип задания: 12
Тема: Степенные функции

Условие

Найдите точку максимума функции y=8x-\frac23x^\tfrac32-106.

Показать решение

Решение

ОДЗ: x \geqslant 0. Найдём производную исходной функции:

y'=8-\frac23\cdot\frac32x^\tfrac12=8-\sqrt x.

Вычислим нули производной:

8-\sqrt x=0;

\sqrt x=8;

x=64.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Знаки производной и промежутки монотонности функции

Из рисунка видно, что точка x=64 является единственной точкой максимума заданной функции.

Ответ

64
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1132

Тип задания: 12
Тема: Логарифмические функции

Условие

Найдите наименьшее значение функции y=5x^2-12x+2\ln x+37 на отрезке \left[\frac35; \frac75\right].

Показать решение

Решение

ОДЗ: x>0.

Найдём производную исходной функции:

y'(x)= 10x-12+\frac{2}{x}= \frac{10x^2-12x+2}{x}.

Определим нули производной: y'(x)=0;

\frac{10x^2-12x+2}{x}=0,

5x^2-6x+1=0,

x_{1,2}= \frac{3\pm\sqrt{3^2-5\cdot1}}{5}= \frac{3\pm2}{5},

x_1=\frac15\notin\left[\frac35; \frac75\right],

x_2=1\in\left[\frac35; \frac75\right].

Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.

Знаки производной и промежутки монотонности функции на отрезке

Из рисунка видно, что на отрезке \left[\frac35; 1\right]исходная функция убывает, а на отрезке \left[1; \frac75\right]возрастает. Таким образом, наименьшее значение на отрезке \left[\frac35; \frac75\right]достигается при x=1 и равно y(1)= 5\cdot 1^2-12\cdot 1+2 \ln 1+37= 30.

Ответ

30
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1131

Тип задания: 12
Тема: Степенные функции

Условие

Найдите наибольшее значение функции y=(x+4)^2(x+1)+19 на отрезке [-5; -3].

Показать решение

Решение

Найдём производную исходной функции, используя формулу производной произведения:

y'= \left((x+4)^2\right)'(x+1)+(x+4)^2(x+1)'= (19)'= 2(x+ 4)(x+1)+(x+4)^2= (x+4)(2x+2+x+4)= (x+4)(3x+6)= 3(x+4)(x+2).

Отыщем нули производной: y'(x)=0;

(x+4)(x+2)=0;

x_1=-4,  x_2=-2.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Знаки производной и промежутки монотонности функции

Из рисунка видно, что на отрезке [-5; -4] исходная функция возрастает, а на отрезке [-4; -3] убывает. Таким образом, наибольшее значение на отрезке [-5; -3] достигается при x=-4 и равно y(-4)= (-4+4)^2(-4+1)+19= 19.

Ответ

19
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1130

Тип задания: 12
Тема: Иррациональные функции

Условие

Найдите точки минимума функции y=\sqrt{x^2+60x+1000}.

Показать решение

Решение

Область определения: x^2+60x+1000 \geqslant 0;

x^2 +2\cdot30x+30^2+(1000-30^2)= (x+30)^2+100>0 для всех вещественных значений x. Заметим, что функция y=\sqrt t строго возрастает на множестве t\geqslant0. Отсюда точка минимума исходной функции совпадёт с точкой минимума x_0 функции x^2+60x+1000. Точка минимума квадратичной функции с положительным старшим коэффициентом совпадает с абсциссой вершины соответствующей параболы. Вершина параболы имеет абсциссу x_0=-\frac{60}{2\cdot1}=-30.

Ответ

-30
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1129

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите наименьшее значение функции y=(5x^2-70x+70)e^{x-12} на отрезке [10; 15].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения

y'= (5x^2-70x+70)'e^{x-12}\,+ (5x^2-70x+70)\left(e^{x-12}\right)'= (10x-70)e^{x-12}\,+ (5x^2-70x+70)e^{x-12}= (5x^2-60x)e^{x-12}= 5x(x-12)e^{x-12}.

Вычислим нули производной: y'=0;

5x(x-12)e^{x-12}=0,

x_1=0,  x_2=12.

Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.

Знаки производной и промежутки монотонности функции на отрезке

Из рисунка видно, что на отрезке [10; 12] исходная функция убывает, а на отрезке [12; 15] — возрастает. Таким образом, наименьшее значение на отрезке [10; 15] достигается при x=12 и равно y(12)= (5\cdot 12^2-70\cdot 12+70)e^{12-12}= -50.

Ответ

-50
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1128

Тип задания: 12
Тема: Тригонометрические функции

Условие

Найдите наименьшее значение функции y=32tg x - 32x-8\pi+103 на отрезке \left[-\frac{\pi}{4}; \frac{\pi}{4}\right].

Показать решение

Решение

Найдём производную исходной функции:

y'= 32(tg x)'-(32x)'-(8\pi )'+(103)'= \frac{32}{\cos ^2x}-32= \frac{32-32\cos ^2x}{\cos ^2x}\geqslant0. Значит, исходная функция является неубывающей на рассматриваемом промежутке и принимает

наименьшее значение на левом конце отрезка, то есть при x=-\frac{\pi}{4}. Наименьшее значение равно y\left(-\frac{\pi}{4}\right)= 32tg\left(-\frac{\pi}{4}\right)-32\cdot\left(-\frac{\pi}{4}\right)-8\pi+103= -32+103= 71.

Ответ

71
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1127

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите точку максимума функции y=(x+3)^2e^{x-2016}.

Показать решение

Решение

Будем находить точку максимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y'(x)= \left((x+3)^2\right)'e^{x-2016}+(x+3)^2\left(e^{x-2016}\right)'= 2(x+3)e^{x-2016}+(x+3)^2e^{x-2016}= (x+3)e^{x-2016}(2+x+3)= (x+3)(x+5)e^{x-2016}.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Так как e^{x-2016}>0 для любого x, то y'=0 при x=-3,  x=-5.

Знаки производной и промежутки монотонности функции

Из рисунка видно, что функция y=(x+3)^2e^{x-2016} имеет единственную точку максимума x=-5.

Ответ

-5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.